

Status and plans of mechanical analysis of different 2^{nd} generation IR quad designs

Giorgio Ambrosio

FNAL – Technical Division

OUTLINE:

- Goal and plans
- Where we are now
- Next steps

Goal and plans

- GOALS: Study and compare mechanical designs for both shell and racetrack type quadrupoles in order to select the best design concept for the 1st short model,
 - Have engineering design by the end of FY05.

Candidates: - Shell type ϕ = 110 mm with Aluminum outer shell

- Shell type ϕ = 110 mm with Stainless Steel skin

- Racetrack type ϕ = 92 mm with Al/SS skin

Criteria: - Acceptable stress and strain in the coil

- Acceptable coil deformation

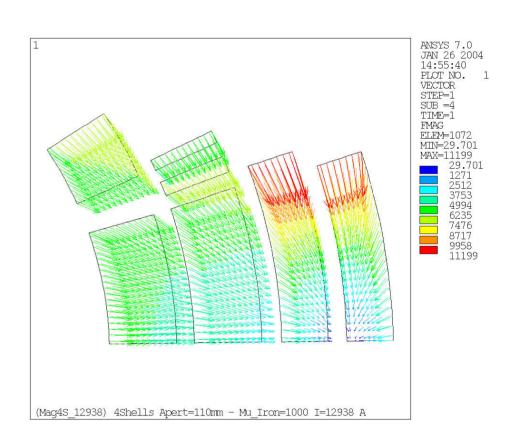
STEPS: - Analytical analysis

- FEM with fixed BC

- FEM with external forces

- Full FEM model (conceptual)

Shell type - Magnetic forces



***** Forces computed by ROXIE and ANSYS

$$@I=13kA (= 228 T/m)$$

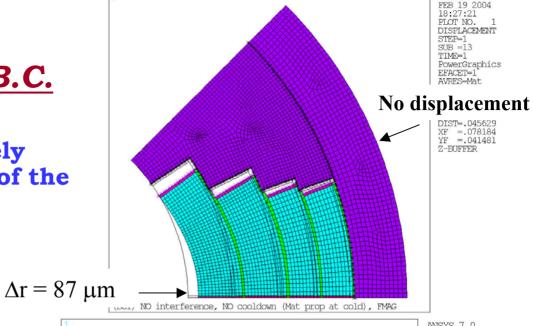
	ROXIE	ANSYS	HGQ†
	(MN/m)	(MN/m)	(MN/m)
$\mathbf{F}_{\mathbf{X}}$	4.2	4.2	1.6
F _Y	-4.2	-4.1	-1.9
\mathbf{F}_{R}		2.8	
$\mathbf{F}_{ heta}$		-5	

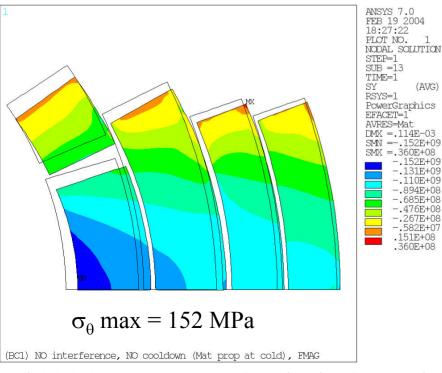
[†] KEK design scaled to 228 T/m

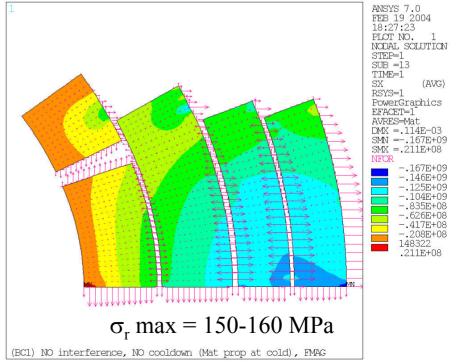
Shell type - Analytical study

- 1st shell: $F_{\theta} = 1.5$ MN/m,
 - o Width = 12.3 mm,

$$\rightarrow \underline{\sigma_{\theta}} = 122 \text{ MPa}$$

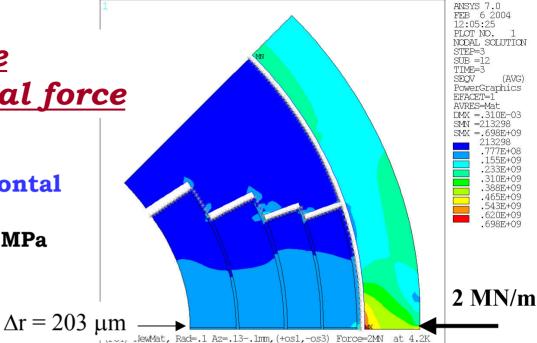

- \Rightarrow Bottom half of coil: $F_r = 1.7 \text{ MN/m}$,
 - $_{0}$ $E_{r coil}$ = 50 GPa, $E_{r ins}$ = 14 GPa
 - $\rightarrow \Delta r = 87 \mu m$ (average)

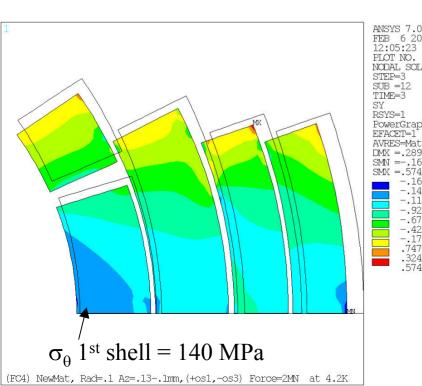

And this deflection is going to increase the stress in the 1st shell!

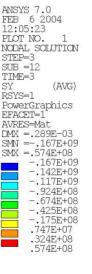


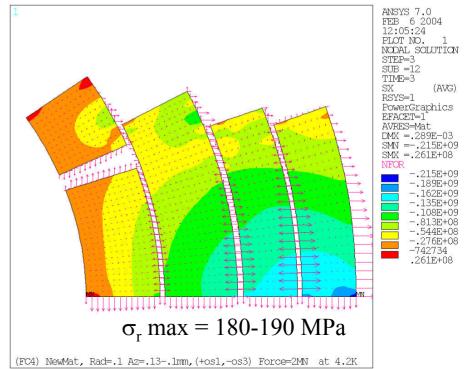
Shell type Infinitely rigid B.C.

- Fermilah
- Stress in the coil with infinitely rigid BC on the outer surface of the collars
 - NO pre-stress
 - Material properties @ 4.2 K
 - Fmag (a) 13 kA = 228 T/m

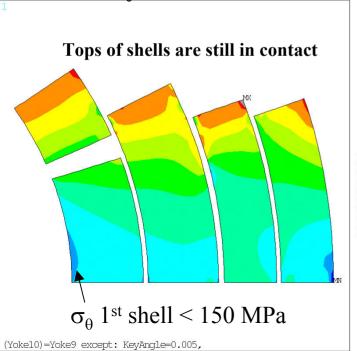


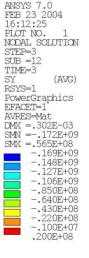

(AVG)

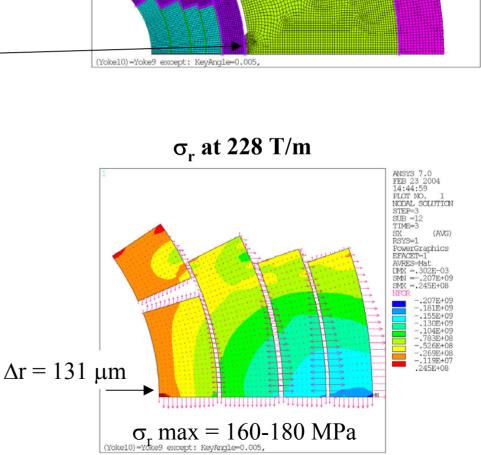



Shell type FEM with external force

- Stress in the coil with horizontal force on the midplane
 - With some pre-stress <120 MPa
 - Fmag @ 13 kA = 228 T/m






Shell type with Al outer shell

- Fermilab
 - Al shell
 - ❖ Yoke with gap at 45 deg.
 - SS keys in contact after cooldown and at max Grad.
 - Collar-Yoke contact 0-6 deg.-
 - Bladder technology

Next steps

Shell type with SS skin

By the end of Q2

❖ Block type (F_x =5.5 F_y =-6 MN/m @ 228 T/m) By the end of Q3

- o Analytical study
- FEM with fixed BC
- FEM with external help (force and/or BC)
- Full FE model (conceptual)
- Comparison with LBNL design
- Sensitivity analysis

o As part of the decision process

By the end of FY04

Decision for 1st short model

❖ Final design of 1st short model with magnetic and mechanical optimization By the end of FY05